Global Existence for Id, Compressible, Isentropic Navier-stokes Equations with Large Initial Data

نویسنده

  • DAVID HOFF
چکیده

We prove the global existence of weak solutions of the Cauchy problem for the Navier-Stokes equations of compressible, isentropic flow of a polytropic gas in one space dimension. The initial velocity and density are assumed to be in L2 and L2 n BV respectively, modulo additive constants. In particular, no smallness assumptions are made about the intial data. In addition, we prove a result concerning the asymptotic decay of discontinuities in the solution when the adiabatic constant exceeds 3/2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helically Symmetric Solutions to the 3-D Navier-Stokes Equations for Compressible Isentropic Fluids

Abstract: We prove the existence of global weak solutions to the Navier-Stokes equations for compressible isentropic fluids for any γ > 1 when the Cauchy data are helically symmetric, where the constant γ is the specific heat ratio. Moreover, a new integrability estimate of the density in any neighborhood of the symmetry axis (the singularity axis) is obtained.

متن کامل

Global Classical Solutions and Large-Time Behavior of the Two-Phase Fluid Model

We study the global existence of a unique strong solution and its large-time behavior of a two-phase fluid system consisting of the compressible isothermal Euler equations coupled with compressible isentropic Navier-Stokes equations through a drag forcing term. The coupled system can be derived as the hydrodynamic limit of the Vlasov-Fokker-Planck/isentropic NavierStokes equations with strong l...

متن کامل

Global behavior of 1D compressible isentropic Navier-Stokes equations with a non-autonomous external force

* Correspondence: [email protected] College of Mathematics and Information Science, North China University of Water Sources and Electric Power, Zhengzhou 450011, People’s Republic of PR China Abstract In this paper, we study a free boundary problem for compressible Navier-Stokes equations with density-dependent viscosity and a non-autonomous external force. The viscosity coefficient μ is p...

متن کامل

On the free boundary value problem for one-dimensional compressible Navier-Stokes equations with constant exterior pressure

*Correspondence: [email protected] 1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, 450011, P.R. China 2Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, P.R. China Full list of author information is available at the end of the article Abstract In this paper, we consider the free bounda...

متن کامل

Global Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations with Density-Dependent Viscosity

We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010